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Abstract. A closed analytical expression is derived for the joint distribution function of the
real and the imaginary parts of the eigenenergies of the operatorH = H0 − iWW+ for the
one-channel case, whereH0 is taken from the Poissonian or one of the Gaussian ensembles with
universality indexβ, and where the squared moduli|wα |2 of the components ofW are assumed
to beχ2-distributed with universality index̄β. In the strong coupling limit and for the special
caseβ = β̄ the joint distribution function of the real parts of the eigenvalues ofH becomes
identical with the joint energy distribution function of the eigenvalues ofH0.

1. Introduction

All spectroscopic methods face the old problem that the object under observation is
unavoidably disturbed by the measurement. Thus, the results obtained from the experiment
always reflect an unwanted combination of the properties of the system and the apparatus.
Theoretically this can be taken into account by introducing one or several measuring
channels by which the system is coupled to the outer world. Quantum mechanically the
situation can be described by an effective Hamiltonian

H = H0− iWW+ (1.1)

whereH0 is the Hamiltonian of the ‘true’ system, undisturbed by the apparatus, and the
imaginary part describes the coupling. In the following we shall take forH0 an N × N
matrix taken either from the Poissonian or from one of the Gaussian ensembles. In the
general caseW is given by aN ×M matrix, whereM is the number of coupling channels.
In the following we shall consider the one-channel caseM = 1 only. Then the matrixW
collapses to a vector. For the absolute squares of its componentswn(n = 1, . . . , N) we
shall assume aχ2 distribution.

The Hamiltonian (1.1) was originally introduced in the context of nuclear physics
[Lew91], but it can, in fact, be applied to all situations where the spectroscopic properties
are to be determined. In particular it has proved to be useful in the interpretation of the
reflection and transmission properties of chaotic microwave cavities (‘microwave billiards’)
[Alt96, Ste95].

In the presence of the channel part−iWW+ of the Hamiltonian the eigenvalues acquire
a negative imaginary part, and the real parts are modified. Haake, Lehmann and coworkers
[Haa88, Leh95] derived analytical expressions for the distributions of eigenvalues ofH

in the complex plane and found that with increasing coupling strengthg = ∑
(wn)
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eigenvalues obtain large negative imaginary parts proportional tog, whereas the remaining
N −M eigenvalues remain close to the real axis with imaginary parts of the order of 1/g.
Though qualitatively this result is a straightforward consequence of the special structure of
the channel part of the Hamiltonian, it may nevertheless be considered as counterintuitive.
The dissipation introduced by the channels is not equally distributed on all eigenvalues, but
afflicts essentially only just as many eigenvalues as there are coupling channels.

The model was applied by us to microwave billiards with an attached side arm containing
a so-called microwave isolator [Sto95]. It acts as a one-way pass for the microwaves,
allowing transmission in one direction only. It showed that these experiments can be
quantitatively described by the Hamiltonian (1.1) with one open channel [Haa96].

In the course of the experiments the question arose as to how spectral correlations known
from random matrix theory, such as level spacing distribution, number variance or spectral
rigidity, have to be modified in the presence of coupling channels. To answer these questions
the results in [Leh95] on the eigenvalue distribution in the complex plane do not help as
they contain no information on two-point and higher-order correlation functions. For this
purpose the correlated eigenenergy distribution functionP(EnR,EnI ) of the Hamiltonian,
whereEnR andEnI are real and imaginary parts of the eigenvaluesEn of H , respectively
is needed. It is the purpose of this paper to derive an expression for this quantity for the
one-channel case. Astonishingly enough we shall end with an exact analytical expression.
In the derivation only invariance properties will be used, an explicit diagonalization ofH

will not be necessary.

2. Preliminaries

Some preparatory steps are needed, before we start the calculation of the correlated energy
distribution function. Most of the results presented in this section are already known from
the literature [Alb91]; they are reproduced here mainly for later reference. Starting with the
Hamiltonian (1.1) one derives

(E −H) = (E −H0)

(
1+ i

E −H0
WW+

)
. (2.1)

HereE is an arbitrary energy (only with the exception of the eigenvalues ofH0). Taking
the determinant on both sides one has

|E −H | = |E −H0|
∣∣∣∣1+ i

E −H0
WW+

∣∣∣∣ . (2.2)

The second determinant can be evaluated with help of the lemma

|1+ AB| = |1+ BA|. (2.3)

For quadratic matricesA,B this is a straightforward consequence of elementary determinant
properties, but it also holds forN ×M matricesA andM × N matricesB with N 6= M.
For the proof the determinant is written as

|1+ AB| = exp(Tr(ln(1+ AB))).
Expanding the logarithm and using the commutative property of the trace one immediately
arrives at (2.3). Applying the lemma to equation (2.2) one has

|E −H | = |E −H0|
∣∣∣∣1+ iW+

1

E −H0
W

∣∣∣∣ (2.4)
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or ∏
n

(E − En) =
∏
n

(E − E0
n)

(
1+ i

∑
α

|wα|2
E − E0

α

)
(2.5)

where thewα are the components ofW in the eigenbasis ofH0. One sees that the zeros of
the function

g(E) = 1+ i
∑
α

|wα|2
E − E0

α

(2.6)

give the eigenvalues ofH whereas its poles are at the eigenvalues ofH0. In the strong
coupling limit this has the consequences that the eigenvalues ofH are pinned down by the
two neighbouring poles. The eigenvalues ofH andH0 thus form an alternating sequence.
This alone is sufficient to determine the eigenvalue repulsion behaviour ofH for small
distances from that ofH0 [Haa96].

Assuming for the momentE as real, one obtains from equation (2.5) by adding the
complex conjugate on both sides,∏

n

(E − E0
n) = 1

2

(∏
n

(E − En)+
∏
n

(E − E∗n)
)
. (2.7)

By subtracting the complex conjugate on both sides of equation (2.5) one obtains analogously

i
∑
α

|wα|2
E − E0

α

=
∏
(E − En)−

∏
(E − E∗n)∏

(E − En)+
∏
(E − E∗n)

. (2.8)

Both equations, though originally derived for realE, are nevertheless correct for arbitrary
E (the latter one with the exception of the poles, of course). This is a consequence of the
principle of analytic continuation. Taking in particularE = Em, equation (2.7) yields the
relation ∏

n

(Em − E0
n) = 1

2

∏
n

(Em − E∗n) (2.9)

which will be repeatedly used in the following. For later reference we note that one may
equally well interchange the parts ofH andH0 from the very beginning. One obtains then
in complete analogy to equation (2.5)∏

n

(E − E0
n) =

∏
n

(E − En)
(

1− iW+
1

E −H W
)
. (2.10)

A combination of equations (2.7) and (2.10) finally yields

iW+
1

E −H W =
1

2

(
1−

∏
n

(E − E∗n)
(E − En)

)
. (2.11)

Now we are prepared to formulate an expression for the correlated energy distribution
functionP(EnR,EnI ) of the Hamiltonian (1.1). Equation (2.5) supplies us with a relation
between the 2N variablesEnR, EnI on the left-hand side and the 2N variablesE0

n, cn = |wn|2
on the right-hand side. The joint energy distribution ofH can therefore be obtained from the
joint energy distribution ofH0 andcn, and from the Jacobi determinant for the transformation
from one set of variables to the other.

If H0 belongs to the Poissonian or one of the Gaussian ensembles, the correlated
distribution of theE0

n is given by [Haa91]

P(E0
n) ∼

∏
n>m

|(E0
n − E0

m)|β exp

(
− A

∑
n

(E0
n)

2

)
(2.12)
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whereβ is the universality index. For thecn we assume aχ2-distribution,

p(cn) ∼
(∏

n

cn

)(β̄−2)/2

exp

(
− a

∑
n

cn

)
(2.13)

with the universality indexβ̄. For β̄ = 1 corresponding to the Gaussian orthogonal
ensemble (GOE) case this is just the well-known Porter–Thomas distribution. Forβ̄ = 0
corresponding to the Poisson case the distribution is not normalizable. We shall come back
to this point later. With these quantities the correlated energy distribution function forH

now reads

P(EnR,EnI ) ∼ P(E0
n)p(cn)

∣∣∣∣ ∂(E0
n, cn)

∂(EnR,EnI )

∣∣∣∣ . (2.14)

It is now the task to express all quantities entering on the right-hand side of the equation
in terms of theEnR, EnI alone. This will be performed step by step in the next section.

3. The different steps

3.1. The sum
∑

n(E
0
n)

2

Expanding the products on both sides of equation (2.7) and equating the coefficients ofE

andE2 one has∑
n

E0
n = 1

2

(∑
n

En +
∑
n

E∗n

)
∑
n6=m

E0
nE

0
m = 1

2

(∑
n6=m

EnEm +
∑
n6=m

E∗nE
∗
m

) (3.1)

whence it follows that, after some straightforward manipulations,∑
n

(E0
n)

2 =
∑
n

(EnR)
2−

∑
n

(EnI )
2+

(∑
n

EnI

)2

. (3.2)

3.2. The sum
∑

n cn

Expanding both sides of equation (2.8) in powers ofE−1 and taking the coefficient ofE−1

one has

i
∑
n

cn = − 1
2

∑
n

(En − E∗n) (3.3)

or ∑
n

cn = −
∑
n

EnI . (3.4)

3.3. The product
∏
n cn

Taking the limitE→ E0
n on both sides of equation (2.5) one obtains

icn =
∏
m(E

0
n − Em)∏′

m(E
0
n − E0

m)
(3.5)
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where the prime denotes that the term withm = n has to be omitted from the product.
Taking the product overn one has∏

n

cn ∼
∏
nm(E

0
n − Em)∏′

n,m(E
0
n − E0

m)
∼
∏
n,m(En − E∗m)∏′
n,m(E

0
n − E0

m)
(3.6)

where equation (2.9) was used. The denominator will be treated separately later. We shall
see that this quantity will cause the largest troubles.

3.4. The Jacobi determinant

The partial logarithmic derivative on both sides of equation (2.5) with respect tox, where
x stands for one of theE0

n, cn, yields

−
∑
m

1

E − Em
∂Em

∂x
= −

∑
m

1

E − E0
m

∂E0
m

∂x
+ 1

g(E)

∂g(E)

∂x
. (3.7)

Multiplying both sides with(E − En) and taking the limitE→ En one obtains

∂En

∂x
= − 1

g′(En)
∂g(En)

∂x
. (3.8)

With
∂g(En)

∂E0
α

= icα
(En − E0

α)
2

∂g(En)

∂cα
= i

En − E0
α

(3.9)

it follows for the functional determinant that

J =
∣∣∣∣∂(En,E∗n)∂(E0

α, cα)

∣∣∣∣ ∼ ∏
n cn∏

n g
′(En)

∣∣∣∣ 1
En−E0

α

1
E∗n−E0

α

1
(En−E0

α)
2

1
(E∗n−E0

α)
2

∣∣∣∣ . (3.10)

Note that this determinant is the inverse of the quantity entering into equation (2.14).
Furthermore we have now takenEn,E∗n as variables instead ofEnR,EnI . The respective
Jacobi determinants differ only by a constant factor. For the product

∏
n g
′(En) one obtains

from equation (2.5)∏
n

g′(En) =
∏
n

∂

∂E

(∏
m

(E − Em)
(E − E0

m)

)
E=En

=
∏′
n,m(En − Em)∏
n,m(En − E0

m)

∼
∏′
n,m(En − Em)∏
n,m(En − E∗m)

(3.11)

where in the last step equation (2.9) was again used. The remaining determinant is evaluated
in two steps. We start with

1 =
∣∣∣∣ 1

En − E0
α

∣∣∣∣ . (3.12)

This determinant is calculated similarly to the Vandermonde determinant. First the first
column is subtracted from all other columns, and the common factors are taken out of the
determinant. In the next step the first row is subtracted from all other rows, the common
factors are again taken out, and so on. The result is

1 =
∏
n>m(En − Em)

∏
α>β(E

0
α − E0

β)∏
n,α(En − E0

α)
. (3.13)



3444 H-J Stöckmann and P̌Seba

In the next step the determinant in equation (3.10) is written as

J =
∣∣∣∣ 1

En−E0
α

1
E∗n−E0

α

1
(En−E0

α)
2

1
(E∗n−E0

α)
2

∣∣∣∣ =∏
α

∂

∂Ē0
α

∣∣∣∣ 1
En−E0

α

1
E∗n−E0

α

1
En−Ē0

α

1
E∗n−Ē0

α

∣∣∣∣
Ē0
α=E0

α

. (3.14)

The determinant on the right-hand side is exactly of the same type as1, with the only
difference that now the number of rows and columns has been doubled. One can thus apply
the result (3.13) and obtains

D =
∏
n>m |En − Em|2

∏
n,m(En − E∗m)

∏
α>β(E

0
α − E0

β)
4∏

n,α |En − E0
α|4

. (3.15)

Gathering the results one finds for the functional determinant

J =
∣∣∣∣∂(En,E∗n)∂(E0

α, cα)

∣∣∣∣ ∼∏
n>m

∣∣∣∣E0
n − E0

m

En − Em

∣∣∣∣2 . (3.16)

3.5. The product
∏′
(E0

n − E0
m)

The only quantity entering into equation (2.14) which has not yet been expressed in terms
of EnR andEnI is

X =
∏
n>m

|E0
n − E0

m|. (3.17)

In equation (3.13) we have found a relation betweenX and the determinant1, which can
be rewritten as

X ∼
∏
n,m |En − E∗m|∏
n>m |En − Em|

|1| (3.18)

where again relation (2.9) has been used.
We shall now derive an expression for|1|2 depending only onEnR andEnI . From the

definition (3.12) one has, after some elementary transformations,

|1|2 =
∣∣∣∣∑
α

1

En − E0
α

1

E0
α − E∗m

∣∣∣∣
=
∣∣∣∣∣ 1

En − E∗m
∑
α

(
1

En − E0
α

− 1

E∗m − E0
α

)∣∣∣∣∣
=
∣∣∣∣Xn −X∗mEn − E∗m

∣∣∣∣ (3.19)

where

Xn = Tr
1

En −H0
. (3.20)

The resolvent entering into the trace can be written as

1

En −H0
= 1

En −H+ + iWW+
= 1

1+ iRnWW+
Rn (3.21)

where we have introduced

Rn = 1

En −H+ . (3.22)
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Further transformations yield

1

En −H0
=
(

1− iRnWW
+ 1

1+ iRmWW+

)
Rn

=
(

1− iRnW
1

1+ iW+RnW
W+

)
Rn (3.23)

whence follows for the trace

Tr
1

En −H0
= TrRn − iW+R2

nW
1

1+ iW+RnW
. (3.24)

The quantitiesW+RnW andW+R2
nW are obtained directly from equation (2.11):

iW+RnW = −
(

iW+
1

E∗n −H
W

)∗
= −1

2
(3.25)

and

iW+R2
nW =

∂

∂E

(
iW+

1

E −H W
)∗
E=E∗n

= −1

2

∏′
α(En − Eα)∏
α(En − E∗α)

. (3.26)

We have thus arrived at an expression forXn and thereby also for|1|2, depending only on
EnR,EnI .

4. The joint energy distribution function

Collecting the results from the last section, we obtain from equation (2.14) the joint energy
distribution function

P(EnR,EnI ) ∼ |1|β−β̄
∏
n,m

|En − E∗m|
2β−β̄−2

2

∏
n>m

|En − Em|2−β+β̄

× exp

[
− A

(∑
n

(EnR)
2−

∑
m

(EnI )
2+

(∑
m

EnI

)2)
− a

∑
n

EnI

]
(4.1)

where

|1|2 =
∣∣∣∣Xn −X∗mEn − E∗m

∣∣∣∣ (4.2)

with

Xn =
∑
α

1

En − E∗α
+
∏′
α(En − Eα)∏
α(En − E∗α)

. (4.3)

A detailed discussion of equation (4.1) will have to be reserved to further publications.
Here only the special caseβ = β̄ shall be discussed. It is especially simple as here the
inconvenient determinant factor is absent. One then has

P(EnR,EnI ) =
∏
n,m

|En − E∗m|
β−2

2

∏
n>m

|En − Em|2

× exp

[
− A

(∑
n

(EnR)
2−

∑
m

(EnI )
2+

(∑
m

EnI

)2)
− a

∑
n

EnI

]
. (4.4)

This can be further specialized to the case of large coupling strengthsg =∑ cn. We know
that in this case the imaginary parts of all eigenvalues but one vanish forg→∞ whereas for
one eigenvalue the imaginary part takes an infinitely large negative value (see the discussion
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Figure 1. Level spacing distribution and number variance for the real parts of the eigenvalues
of matricesH = H0− iWW+. The eigenvalues were obtained by numerical diagonalization of
300× 300 matrices in the strong coupling limit withg = ∑n(wn)

2 = 500. The figure shows
the results for the Poissonian (left), the Gaussian orthogonal (middle), and the Gaussian unitary
ensemble (right). The solid lines correspond to the random matrix prediction.

in the introduction). In this limit one obtains from equation (4.4) the correlated distribution
function of the real parts of the(N − 1) eigenvalues remaining close to the real axis:

P(EnR) ∼
∏
n>m

|EnR − EmR|β exp

(
− A

(∑
n

(EnR)
2

))
(4.5)

where only the(N−1) remaining eigenvalues are considered in the product and the sum. We
have arrived here at the remarkable result that for the caseβ = β̄ in the strong coupling limit
the correlated distribution function for the real parts of the remaining(N−1) eigenvalues is
identical to the Gaussian correlated energy distribution function (2.12) for theN eigenvalues
of the original Hamilton operatorH0.

To check this prediction we determined numerically the eigenvalues of random matrices
of the form (1.1) withβ = β̄ for a coupling constantg = 500. The test has been
performed for the Poissonian, the Gaussian orthogonal, and the Gaussian unitary ensemble
by superimposing the spectra of, in total, some 100 matrices of rank 300. For the Poissonian
ensemble the distribution (2.13) of thecn had to be truncated to valuesc > 0.001 to suppress
the nonintegrable singularity atc = 0. Figure 1 shows the level spacing distribution and
number variance for the real parts of theN − 1 eigenvalues with a small imaginary part.
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Figure 2. Level spacing distribution for the real part of eigenvalues of matricesH = H0−iWW+
for the GOE case for different coupling constantsg = 0.1 (a), 0.3 (b), 0.5 (c), 0.7 (d), 0.9 (e),
1.1 (f ), 1.3 (g), 1.5 (h) and 10 (i ). The solid line corresponds to the Wigner GOE prediction.

In all cases the random matrix predictions are verified perfectly well.
In figure 2 theg dependence of the level spacing distribution of the real parts ofH

is shown for the Gaussian orthogonal ensemble. Again the expected behaviour is found.
For small coupling constants the numerical results are still close to the Gaussian orthogonal
ensemble curve, move away from it at intermediate values and they reapproach it again at
large values.

Corresponding results for the caseβ 6= β̄ in the strong coupling limit would be highly
desirable, as this is the situation realized in microwave billiards with attached unidirectional
channels discussed in the introduction [Sto95, Haa96]. For this, however, a compact
expression for|1|2 in the strong coupling limit is needed.
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